Stable volumetric features in deformable shapes

نویسندگان

  • Roee Litman
  • Alexander M. Bronstein
  • Michael M. Bronstein
چکیده

Region feature detectors and descriptors have become a successful and popular alternative to point descriptors in image analysis due to their high robustness and repeatability, leading to a significant interest in the shape analysis community in finding analogous approaches in the 3D world. Recent works have successfully extended the maximally stable extremal region (MSER) detection algorithm to surfaces. In many applications, however, a volumetric shape model is more appropriate, and modeling shape deformations as approximate isometries of the volume of an object, rather than its boundary, better captures natural behavior of non-rigid deformations. In this paper, we formulate a diffusion-geometric framework for volumetric stable component detection and description in deformable shapes. An evaluation of our method on the SHREC’11 feature detection benchmark and SCAPE human body scans shows its potential as a source of high-quality features. Examples demonstrating the drawbacks of surface stable components and the advantage of their volumetric counterparts are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stable Semi-local Features for Non-rigid Shapes

Feature-based analysis is becoming a very popular approach for geometric shape analysis. Following the success of this approach in image analysis, there is a growing interest in finding analogous methods in the 3D world. Maximally stable component detection is a low computation cost and high repeatability method for feature detection in images.In this study, a diffusion-geometry based framework...

متن کامل

A Novel Framework for Automated 3D PDM Construction Using Deformable Models

This paper describes a novel framework to build 3D Point Distribution Model (PDM) from a set of segmented volumetric images. This method is based on a deformable model algorithm. Each training sample deforms to approximate all other training shapes. The training sample with best approximation results is then chosen as the template. Finally, the poor approximation results from this template are ...

متن کامل

Diffusion-geometric maximally stable component detection in deformable shapes

Maximally stable component detection is a very popular method for feature analysis in images, mainly due to its low computation cost and high repeatability. With the recent advance of feature-based methods in geometric shape analysis, there is significant interest in finding analogous approaches in the 3D world. In this paper, we formulate a diffusion-geometric framework for stable component de...

متن کامل

Active Animations of Reduced Deformable Models with Environment Interactions

We present an efficient spacetime optimization method to automatically generate animations for a general volumetric, elastically deformable body. Our approach can model the interactions between the body and the environment and automatically generate active animations. We model the frictional contact forces using contact invariant optimization and the fluid drag forces using a simplified model. ...

متن کامل

An Object-Based Volumetric Deformable Atlas for the Improved Localization of Neuroanatomy in MR Images

We present a hierarchical object–based deformable atlas, a promising new approach for the automatic localization and quantitative analysis of neuroanatomy in MR images. The 3D finite element-based elastic atlas combines the advantages of both volumetric– and surface– based deformable atlases in one single unifying framework. This multiresolution framework is not only capable of deforming entire...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Graphics

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2012